Multiphasic Regulation of Systemic and Peripheral Organ Metabolic Responses to Cardiac Hypertrophy.
نویسندگان
چکیده
BACKGROUND Reduced fat oxidation in hypertrophied hearts coincides with a shift of carnitine palmitoyl transferase I from muscle to increased liver isoforms. Acutely increased carnitine palmitoyl transferase I in normal rodent hearts has been shown to recapitulate the reduced fat oxidation and elevated atrial natriuretic peptide message of cardiac hypertrophy. METHODS AND RESULTS Because of the potential for reduced fat oxidation to affect cardiac atrial natriuretic peptide, and thus, induce adipose lipolysis, we studied peripheral and systemic metabolism in male C57BL/6 mice model of transverse aortic constriction in which left ventricular hypertrophy occurred by 2 weeks without functional decline until 16 weeks (ejection fraction, -45.6%; fractional shortening, -22.6%). We report the first evidence for initially improved glucose tolerance and insulin sensitivity in response to 2 weeks transverse aortic constriction versus sham, linked to enhanced insulin signaling in liver and visceral adipose tissue (epididymal white adipose tissue [WAT]), reduced WAT inflammation, elevated adiponectin, mulitilocular subcutaneous adipose tissue (inguinal WAT) with upregulated oxidative/thermogenic gene expression, and downregulated lipolysis and lipogenesis genes in epididymal WAT. By 6 weeks transverse aortic constriction, the metabolic profile reversed with impaired insulin sensitivity and glucose tolerance, reduced insulin signaling in liver, epididymal WAT and heart, and downregulation of oxidative enzymes in brown adipose tissue and oxidative and lipogenic genes in inguinal WAT. CONCLUSIONS Changes in insulin signaling, circulating natriuretic peptides and adipokines, and varied expression of adipose genes associated with altered insulin response/glucose handling and thermogenesis occurred prior to any functional decline in transverse aortic constriction hearts. The findings demonstrate multiphasic responses in extracardiac metabolism to pathogenic cardiac stress, with early iWAT browning providing potential metabolic benefits.
منابع مشابه
Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملارزیابی شدت بیماری در 40 بیمار مبتلا به اسکلرودرمی
The aim of this study was test a new developed severity for individual organ system involvment in 40 patients with systemic sclerosis (SSc, scleroderma). In this study used from a new developed disease severity scale published by an international study group for determination of severity grade in 9 organ system, general, skin, peripheral vascular, joint/tendon, skeletal muscle, gaster...
متن کاملتأثیر هشت هفته تمرین تناوبی خیلی شدید بر بیان ژن خانواده miR-29 و هایپرتروفی عضلهی قلبی رتهای نر سالم
Background and Objective: In this study the effect of high intensity interval training on miR-29 expression that is expressed in the heart and in the regulation of physiological processes, including extracellular matrix and cardiac hypertrophy of healthy male rats were examined. Materials and Methods: 16 Wistar rats were divided into training (n=8) and control (n=8) groups. After one week of fa...
متن کاملMicroRNAs are involved in end-organ damage during hypertension.
Even in the new millennium, arterial hypertension remains a serious condition, with considerable morbidity and mortality worldwide. Crucial in managing the disease is not only lowering arterial blood pressure but also preventing or treating the typical end-organ damage caused by long-lasting and inadequately treated hypertension. In the past decade, it has been shown that microRNAs (miRs) are i...
متن کاملTGFbeta neutralization within cardiac allografts by decorin gene transfer attenuates chronic rejection.
Chronic allograft rejection (CR) is the leading cause of late graft failure following organ transplantation. CR is a progressive disease, characterized by deteriorating graft function, interstitial fibrosis, cardiac hypertrophy, and occlusive neointima development. TGFbeta, known for its immunosuppressive qualities, plays a beneficial role in the transplant setting by maintaining alloreactive T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Heart failure
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2017